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a b s t r a c t 

Test case prioritization (TCP), which aims at detecting faults as early as possible is broadly used in pro- 

gram regression testing. Most existing TCP techniques exploit coverage information with the hypothesis 

that higher coverage has more chance to catch bugs. Static structure information such as function and 

statement are frequently employed as coverage granularity. However, the former consumes less costs but 

presents lower capability to detect faults, the latter typically incurs more overhead. 

In this paper, dynamic function call sequences are argued that can guide TCP effectively. Same set of func- 

tions/statements can exhibit very different execution behaviors. Therefore, mapping program behaviors 

to unit-based (function/statement) coverage may not be enough to predict fault detection capability. We 

propose a new approach AGC (Additional Greedy method Call sequence). Our approach leverages dynamic 

relation-based coverage as measurement to extend the original additional greedy coverage algorithm in 

TCP techniques. 

We conduct our experiments on eight real-world java open source projects and systematically compare 

AGC against 22 state-of-the-art TCP techniques with different granularities. Results show that AGC out- 

performs existing techniques on large programs in terms of bug detection capability, and also achieves 

the highest mean APFD value. The performance demonstrates a growth trend as the size of the program 

increases. 

© 2020 Elsevier Inc. All rights reserved. 
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. Introduction 

Software evolves continuously during development and main-

enance on account of numerous reasons such as adding new fea-

ures, modifying old features and refactoring. Existing test suite is

idely utilized by regression testing aims at detecting regressions,

alidating software changes and avoiding the introduction of new

ugs. Lu et al. (2016) . However, previous studies report that the

ost of regression testing can be very high. One regression testing

ay last for more than seven weeks ( Rothermel et al., 1999; Huang

t al., 2012 ), which can account for as much as one-half of the

oftware maintenance cost ( Kaner, 1997; Chittimalli and Harrold,

009 ). Therefore, measures of saving testing budgets are necessary

nd indispensable. 
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Test Case Prioritization (TCP) is one of the measures to allevi-

te the budget of regression testing, which can increase the like-

ihood of revealing faults earlier in the testing process. Existing

lgorithms usually exploit unit-based information such as func-

ion or statement ( Yoo and Harman, 2012; Elbaum et al., 2001;

othermel et al., 2002; Catal and Mishra, 2013; Luo et al., 2016 ) as

ommon coverage features to guide TCP, based on the hypothesis

hat a test case with a higher coverage rate has a higher probabil-

ty to detect faults. Coverage criterion at coarser granularity, such

s function coverage, gives faster but less accurate prioritization;

hile a finer granularity such as statement coverage, typically de-

ects faults accurately at a cost of more overhead. Both function

nd statement coverage are widely used in TCP today ( Luo et al.,

016 ) and various studies have examined their trade-off ( McMaster

nd Memon, 2008; Marijan et al., 2013; Thomas et al., 2014 ). Fur-

hermore, relation-based information such as branch or path naturally

ontains richer content than unit-based information. It inspires us the

ay to improve TCP performance. 

Various prioritization strategies can be adopted based on the

riterion. For example, in greedy strategy, ( Rothermel et al., 1999;

001 ) test cases can be ranked by their absolute coverage, i.e.



2 J. Chi, Y. Qu and Q. Zheng et al. / The Journal of Systems and Software 163 (2020) 110539 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

w  

f  

t  

f  

t  

i  

s  

i  

o  

d  

u  

s

 

u

 

f  

i  

t  

e  

r  

s  

T  

T

c  

b  

o

 

n  

F  

s  

l  

f  

c  

t  

t

3

 

t  

e  

C  

d  

t  

s  

N  

t  

fi  

i  

t

D  

P  
select the one that has the highest coverage among the remain-

ing test cases or by the relative coverage, i.e. select the one that

has the highest new coverage not covered by already selected test

cases. However, structural coverage may not be the best criteria to

guide the prioritization of dynamic executions ( Fang et al., 2014 ).

Existing techniques map program behaviors to function or state-

ment coverage may be too simplistic to detect faults. Moreover,

such abstraction leads to information loss and thus may lead to

inaccurate fault detection. 

In this paper, method call sequence is exploited to describe pro-

gram behavior relations and guide TCP. Compared with unit-based

coverage, relation-based coverage method call sequence is a bet-

ter indicator to map the dynamic behavior of a program. Our hy-

pothesis is that the same call sequence may exhibit similar pro-

gram behavior and thus the test cases with the larger number of

call sequences should be considered priorly. We believe that the

reduction of call sequence is more precise than those obtained

by unit-based information. Treating program behaviors as a call-

ing network, our approach considers both vertices and paths along

the edges while static structure coverage only considers vertices. 

We propose a new prioritization strategy called Additional

Greedy Call sequence (AGC). In this strategy we extended tradi-

tional additional greedy algorithm and reduce the random process

in the algorithm to lift accuracy. We have implemented our ap-

proach and other 22 state-of-the-art techniques, comparing their

performance on eight real-world open source Java projects and a

real faulty dataset. Experimental results exhibit that granularity in-

deed makes a difference. Our approach outperforms other state-

of-the-art prioritization techniques in the same granularity and

achieves the best average fault detection capability (APFD). Com-

pared with the finer granularity technique, our approach is better

on average fault detection capability metric with one-third to one-

eighth cost. That is, our approach indeed is much more efficient

than the approach based on unit-based coverage. We also com-

pare AGC with multiple similarity-based approach, result shows

that AGC outperforms these techniques. As a conclusion, our ap-

proach performs well as a trade-off between fault detection capa-

bility and prioritization cost. 

The paper makes the following contributions: 

1. Dynamic criterion based on method call sequence to guide

test case prioritization; 

2. Proposing relation-based prioritization strategy AGC, the

best average fault detection capability among other compar-

ing strategies. 

3. Real-world mutation environment and faulty dataset experi-

ments. 

The rest of this paper is organized as follows. Section 2 ex-

plains the motivation of this work. Section 3 summarizes the re-

lated work, followed by a detailed explanation of our approach in

Section 4 . In Section 5 , we present our empirical study. The threats

to validity are discussed in Section 6 and Section 7 introduces the

future work. Finally, Section 8 concludes the paper. 

2. Motivation example 

Consider the function writeSwappedInteger given in Figs. 1 and

3 with four test cases k = 1, k = 2, k = 3 and k = 4 . There is a static

array arrays initialized with length 3 at Line 1. An ArrayIndexOut-

OfBoundsException fault occurs in func4 under user input k = 4 . This

simplified function is part of the package apache.commons.io whose

complete call sequences are depicted in Fig. 1 . In the graph a ver-

tex represents a function and edge f 1 → f 2 indicates that f 1 calls f 2 .

The amplified sub-figure gives the call sequences of writeSwapped-

Integer , which is magnified at the bottom of Fig. 3 . The executions

under the four test cases produce the call sequences: 
1. T C 1 = πk =1 = 〈 f unc1 , f unc2 , f unc3 , f unc4 〉 ; 
2. T C 2 = πk =2 = 〈 f unc5 , f unc6 , f unc7 , f unc8 〉 ; 
3. T C 3 = πk =3 = 〈 f unc5 , f unc6 , f unc7 , f unc9 〉 ; 
4. T C 4 = πk =4 = 〈 f unc1 , f unc6 , f unc3 , f unc8 〉 . 
If the test case TC 2 has been selected first and unit-based func-

ion coverage is used as the criterion to prioritize test cases, TC 1 
ill be select as the next one since it contains four not-covered

unctions. Then the TC 3 that contains only one will be put into the

est order. Finally, since the TC 4 does not contain any not-covered

unction, it will be given a low priority and put into the bottom of

he test order. At this moment this selection is reasonable because

t is hard to predicate which path may lead to bugs. However, the

election order of { TC 2 , TC 1 , TC 3 , TC 4 } significantly delays the test-

ng under TC 4 because the functions covered by πk =4 are a subset

f those covered by πk =1 and πk =2 . That is, since an execution un-

er TC 4 does not cover any new functions, the test case is very

nlikely to be checked under test case prioritization. The similar

cenario happens under statement coverage based criteria. 

Another motivating example is given in Fig. 2 , the executions

nder the four test cases produce the call sequences: 

1. T C 1 = πk =1 = 〈 f unc1 , f unc2 , f unc3 , f unc4 〉 ; 
2. T C 2 = πk =2 = 〈 f unc1 , f unc2 , f unc4 , f unc3 〉 ; 
3. T C 3 = πk =3 = 〈 f unc2 , f unc1 , f unc3 , f unc4 〉 ; 
4. T C 4 = πk =4 = 〈 f unc4 , f unc3 , f unc2 , f unc1 〉 . 
When the test case TC 1 has been selected as the first order, as

or unit-based function coverage, TC 2 , TC 3 , TC 4 has the same prior-

ty due to the reason that there are no not-covered functions for

hese three test cases. Strategy based on unit-based function cov-

rage will randomly choose one test case as the next order and

epeat this action until there is no candidate. However, If we con-

ider sequential information between function entities, although

C 2 , TC 3 , TC 4 has the same set of function entity compared with

C 1 , they exhibit very different execution behaviors. TC 2 and TC 3 
ontain less not-covered sequences than TC 4 . Therefore, TC 4 will

e selected as the next order. The similar scenario happens under

ther unit-based criteria. 

In this paper, we propose a new test case prioritization tech-

ique that is based on call sequences. Consider four traces in

ig. 3 and TC 2 will be selected first again. TC 1 and TC 3 contain the

ame or fewer sub-sequences than that of TC 4 , they do not de-

ay TC 4 . This is because that none of the sequences func 1 → func 6,

unc 6 → func 3, func 3 → func 8, func 1 → func 6 → func 3 → func 8 are

overed by πk =1 or πk =2 or πk =3 . It is straightforward to believe

hat our call-sequences-based technique can map program execu-

ion behaviors more accurately. 

. Background and related works 

In order to alleviate the cost of regression testing, three main

echniques have been proposed ( Yoo and Harman, 2012; Wong

t al., 1997 ): Test Case Minimization, Test Case Selection and Test

ase Prioritization. Test suite minimization aims to remove redun-

ant test cases, the size of the test suite is reduced. Test case selec-

ion considers the changes between the current and previous ver-

ions, selects only those test cases that are relevant to the changes.

either test suite minimization nor test case selection guarantees

he integrity of the test suite. Test Case Prioritization (TCP) seeks to

nd the ideal ordering of the test cases, so that a regression test-

ng obtains a maximum benefit under limited resources or when

he testing process is prematurely halted at some arbitrary point. 

Definition 1 gives the formal definition of TCP. 

efinition 1 ( Elbaum et al., 20 0 0 ) . Given a test suite T , the set

T is all the permutations of T. f is a function from PT to the real
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Fig. 1. Motivation Example 1. 

Fig. 2. Motivation Example 2. 

Fig. 3. A Snippet of ”writeSwappedInteger”. 

n  

s

 

f  

f

 

t  

R  

2  

t  

s  

t  

c

 

a  

C  

t  

b  

a  

T  

t  

a  

e  

(  

2  

M  

t  

t  

o  

r  

m  

m  

e  

c  

f  

c  
umbers. The problem of test case prioritization is to find T ′ ∈ PT

uch that ∀ ( T ′′ )( T ′′ ∈ PT )( T ′′ 	 = T ′ )[ f ( T ′ ) ≥ f ( T ′′ )]. 

PT represents the set of all possible orderings of T and f is a

unction that, applied to any such ordering, yields an award value

or that ordering. 

There exist various concrete ways to achieve test case priori-

ization. A large number of approaches ( Yoo and Harman, 2012;

osero et al., 2016; Hao et al., 2016; Mei et al., 2012; Hao et al.,

014; Jia and Harman, 2011; Li et al., 2007 ) have been proposed

hat mainly focus on two steps of test case prioritization. Some

tudies focus on the criterion that measures the effectiveness of a

est case and others concentrate on the strategy that exploits the

riterion to prioritize the test cases. 

Previous studies normally exploit unit-based information ( Yoo

nd Harman, 2012; Elbaum et al., 2001; Rothermel et al., 2002;

atal and Mishra, 2013; Luo et al., 2016 ) as the criteria, based on

he hypothesis that a test case with a higher coverage rate has a

etter chance to detect faults. Function coverage ( Do et al., 2004 )

nd statement coverage ( Rothermel et al., 1999 ) are widely used in

CP today ( Luo et al., 2016 ). Various studies have examined their

rade-offs of time cost and fault detection capability ( McMaster

nd Memon, 2008; Marijan et al., 2013; Thomas et al., 2014 ). There

xist other types of coverage criteria, including branch-coverage

 Elbaum et al., 2002 ), Fault-Exposing-Potential (FEP) ( Elbaum et al.,

002 ), transition and round-trip coverage ( Xu and Ding, 2010 ).

ethod call sequence is also be utilized by some works. However,

he works of Zhang et al. (2012) ; Hemmati et al. (2011) obtained

he method call sequence from static analysis. In this work, we

btain method call sequence from dynamic execution due to the

eason that we think regression testing is a good environment to

ake use of history data for future testing. Dynamic analysis gains

ore accurate method call sequences than static analysis. Wang

t al. (2015) and Fang et al. (2014) have also mentioned method

all sequence, but they just utilized it to calculate edit distance

or clustering. None of them used the call sequence as coverage

riteria. We have added their cluster-based method GC, FCS, GOS
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Table 1 

Strategy example. 

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 

t 1 1 1 1 0 0 0 1 1 

t 2 0 1 0 0 0 1 1 1 

t 3 1 0 0 0 1 0 1 0 

t 4 0 1 0 1 1 0 0 0 
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in different granularities as the baseline. It should be noticed that

the Greed-aided-clustering Ordered Sequence (GOS) algorithm has

serious bugs. We will discuss it in Section 5 . The work of Noor

and Hemmati (2015) mainly focuses on proposing similarity-based

metrics, which is different from our coverage-based technique. 

In this section, we focus on related prioritization strategies, es-

pecially those that we exploit to compare with our proposed ap-

proach. In order to facilitate the understanding of different strate-

gies, we use an example given in Table 1 . In the table there are

eight functions f 1 . . . f 8 and four test cases t 1 . . . t 4 . If an execution

under t i covers f j , the corresponding cell has value 1; otherwise the

value is 0. 

3.1. Greedy technique 

The greedy technique ( Rothermel et al., 2001; 1999 ) attempts to

select a test case with the best coverage rate. Under this guideline,

there are two strategies: the total strategy and the additional strat-

egy. The total strategy always selects the one that offers the best

coverage, in terms of certain criteria, among remaining test cases

regardless of what has already been chosen. The additional strat-

egy selects the test case that covers the most statements, function

or units specified by the criterion that has not been covered before.

Assume that function coverage is used as the criterion in

Table 1 . The total strategy chooses t 1 first because it covers 5 func-

tions. Then t 2 is chosen because it covers four functions. The re-

maining t 3 and t 4 are selected randomly because both of them

cover 3 functions. That is, the test case order given by total strat-

egy is either T = 〈 t 1 , t 2 , t 3 , t 4 〉 or T = 〈 t 1 , t 2 , t 4 , t 3 〉 . 
After choosing t 1 , the additional selects t 4 as the second test

case because it covers { f 4 , f 5 } that have not been covered by t 1 .

On the other hand, both t 2 and t 3 cover one function that has not

been covered by t 1 . Next, t 2 is selected because it covers f 6 that is

covered neither by t 1 nor t 4 . Thus, the only possible test case order

given by additional strategy is T = 〈 t 1 , t 4 , t 2 , t 3 〉 . 
Both greedy strategies are straightforward but effective so that

they are often used as the baseline in the evaluation of existing

studies. Our implementation is based on the work by Rothermel

et al. (1999) . A previous study ( Jiang et al., 2009 ) has shown

that additional strategy outperforms total strategy. Fang et al.

(2014) utilized cluster merge strategy to reduce the global addi-

tional greedy cost, we will compare with this baseline and discuss

if this cluster-based technique is effective. 

3.2. Similarity-based Techniques 

Similarity-based techniques are introduced to utilize the exe-

cution profiles of test cases ( Dickinson et al., 2001; Jiang et al.,

2009; Hemmati and Briand, 2010; Yan et al., 2010; Zhang et al.,

2010; Wang et al., 2015 ). They are mainly divided into two cat-

egories: distribution-based and Adaptive Random Testing (ART).

Distribution-based techniques cluster test cases according to their

dissimilarities. Clusters can be utilized to guide test case selec-

tion and test case prioritization. The purpose of similarity-based

techniques is to maximize diversity (i.e. minimize similarity) of se-

lected test cases. The diversity of test cases is computed by a cer-

tain dissimilarity measure between each pair of test cases. 
In this paper we choose distribution-based techniques Graph

imilarity and Clustering Technique (GC), Function Call Sequence

FCS) ( Wang et al., 2015 ) and ART ( Jiang et al., 2009 ) as represen-

ative Similarity-based Techniques. 

The original work of Wang et al. (2015) chooses three edit dis-

ances which treat profile information as vector, sequence and tree

espectively. In this paper, we implement the same prioritization

trategy but choose two edit distance for comparison. GC is based

n our graph model which chooses graph edit distance ( Kinable

nd Kostakis, 2011 ) to calculate the similarity between each entity

air. Each test case is regarded as a directed call graph. We will

ntroduce the graph model more clearly in the next section. Af-

er computing the graph similarity, K-means clustering algorithm

s utilized for clustering the similar test cases together and guide

CP process. 

FCS technique also utilizes function call sequence, but it is just

sed to calculate the Levenshtein edit distance for clustering. In

eneral, GC and FCS are mainly based on cluster technique and

ample strategy which chooses the test case from each cluster and

orms the testing order. 

Adaptive Random Technique (ART) is a random-based test case

rioritization strategy proposed by Jiang et al. (2009) . There are

wo sets maintained by ART: Prioritized set T and candidate set C .

t the beginning, T is empty and C contains all the test cases. In

heir original work, the first test case is randomly chosen. How-

ver, we have found that the performance is uneven so we select

he first to be the one that covers the maximum number of func-

ions or statements. After selecting the first test case and moving it

rom C to T , ART calculates a distance array by computing the dis-

ance between every pair of test cases between C and T . The dis-

ance between candidates A and B normally refers to Jaccard dis-

ance that is computed by D (A, B ) = 1 − | A ∩ B | 
| A ∪ B | . Finally, ART exploits

he maxmin sampling to select the farthest and the most particu-

ar test case from already selected test cases. In other words, the

ost representative test case in the candidate set. The procedure

epeats until all the test cases have been selected. In the max-min

ampling, there are three types of distances, min, avg, max , that can

e utilized to calculate the distance f ( D ) between the candidate set

nd the prioritized set. 

In fact, Jiang et al. (2009) proposed 3 criteria ( maxmin, average

nd maxmax ). However, Jiang said in their paper that the maxmin

roup is more sensitive to different levels of coverage informa-

ion than the maxavg and maxmax groups. The prior empirical

tudy ( Jiang et al., 2009 ) has also shown that using the min dis-

ance in ART typically leads to the best performance. Thus, in this

aper, we have implemented ART based on ( Jiang et al., 2009 ) and

hosen the maxmin method to compute the prioritized set. Using

able 1 as an example, t 1 is selected first because it covers the

ost number of functions. The distances between t 1 and { t 2 , t 3 ,

 4 } are {1/2, 2/3, 6/7}, so t 4 is added to T and T becomes { t 1 , t 4 }.

ext, the distance between t 1 and { t 2 , t 3 } is {1/2, 2/3} with the

inimum value being 1/2. The distances between t 4 and { t 2 , t 3 }

s {5/6, 4/5} with the minimum being 4/5. To maximize the mini-

um distance, ART chooses t 3 . Therefore, the prioritized test case

y ART is T = 〈 t 1 , t 4 , t 3 , t 2 〉 . 
.3. Search-based Techniques 

Li et al. (2007) introduced the meta-heuristic search algorithm

nto the TCP domain. They proposed two search-based algorithms,

ill-climbing and genetic-based algorithm. The hill-climbing al-

orithm for TCP searches all the neighbors and locates the ones

hat can achieve the largest increases in fitness. The genetic-based

lgorithm (GA) represents a class of adaptive search techniques

ased on the processes of natural genetic selection according

o Darwinian theory of biological evolution ( Holland, 1992 ). In
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Fig. 4. Overview of relation-based approach. 
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(a): path (b): call graph

Fig. 5. Calling graph construction. 
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his paper, we choose the GA approach as the representative

earch-based technique because Li had demonstrated that GA is

ore effective in fault detection ( Li et al., 2007 ). 

.4. Other Approaches 

Mondal et al. (2015) proposed a new approach for bi-objective

ptimization of diversity and test execution time, using α-Shape

nalysis of the Pareto front solutions. However, they utilized static

ethod sequence for analyzing. Several other test case priori-

ization techniques that leverage dynamic program information

ave been proposed. Islam et al. (2012) presented an approach

hat recovers traceability links between system requirements and

est cases using IR techniques (FIX). Korel et al. (2007) proposed

 model-based test prioritization technique that uses the sys-

em modeling to model state-based systems and prioritizes test

ases. Kim and Porter (2002) proposed a so-called history-based

est prioritization technique that exploits historical execution data

n resource-constrained environments. However, these techniques

enerally need extra information than coverage information such

s execution cost or user knowledge. 

. Our approach 

We introduce relation-based information to guide TCP process.

he execution traces under each test case are treated as a sub-

raph of the program. The overview of our approach is given in

ig. 4 , which contains three stages: Execution Monitoring, Aggre-

ated Graph Construction, Sampling and Prioritization. 

We instrument the program code to obtain traces during the

xecution that record the function call sequences under each test

ase. These traces are represented as a call graph. Then at the sec-

nd stage, we integrate all the individual graphs into an aggre-

ated total graph. To make it more efficient, the first two stages

re interwoven and the aggregated graph is built on the fly. Once

he aggregated graph is obtained, our AGC strategy is applied and

ample the testing order based on method call sequence coverage

riterion. 

.1. Graph model 

We will firstly explain our graph model, it plays a important

ole in our approach. With the help of AspectJ-based ( Kiczales

t al., 2001 ) instrumentation tool Kieker ( Van Hoorn et al., 2012 ),

e obtain the full signatures of an invoked method during an exe-

ution, including the method name, the number, types and values

f its parameters, timestamps before and after the execution of the

ethod, the global unique session number and trace number, the
alling order and calling stack of the method. Based on the col-

ected information we are able to create calling graphs ( Graham

t al., 1982; Qu et al., 2015 ) that model method call relationships. 

efinition 2. A calling graph is a directed network CG = (V, E)

here the set of nodes V represents the set of methods in a pro-

ram, and the set of directed edges E represents the method invo-

ation relation. Let m i denotes the method that v i refers to. Then

 i → v j ∈ E if and only if m i has at least one method invocation

hat calls m j . 

Definition 2 gives the definition of the calling graph. An exam-

le about how we collect method call traces and construct call-

ng graphs is given in Fig. 5 . The left figure is the method call

equences obtained by the instrumentation of a particular execu-

ion, where main calls func1, func1 calls func2, func2 calls func3 ,

nd so on. However, a straightforward recording consumes a sig-

ificant amount of memory. Thus, we present call graph as shown

n Fig. 5 (b), there is only one node corresponding to each method.

n the example, each node may have multiple incoming and outgo-

ng edges. As a result, instead of 10 nodes and 9 edges in Fig. 5 (a),

he corresponding calling graph has only 7 nodes and 8 edges. 

Each calling graph corresponds to an execution under one sin-

le test case. Then, we form an aggregated graph that integrates all

he calling graphs into a single graph. 

Matrix T G = [ e i, j ] m ×n is utilized to integrate the set of calling

raphs { C G 1 , . . . C G i } . e i,j is the frequency of node i calling node j.

G records each call sequence in all test cases. TG records each call

equence in all test cases. Each row represents a caller function

ntity and each column represents a callee function entity. For ex-

mple, if func 1 calls func 2, a serial number of func 1 is x and func 2

s y, TG [ x ][ y ] will be labeled to 1. We have thought about whether

e should consider the frequency of each call sequence. But we
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Fig. 6. Different types of method calls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Main process of AGC. 

Input: test suite T = { t 1 , t 2 , ... } 
1: Calculated edge set E = { e 1 , e 2 , ... } 
2: Template Stack S for the same weight test cases 

3: while T .size ()! = 0 do 

4: Calculate weight for each test case t , w = 0 

5: while Any test case t haven’t been calculated do 

6: while Any edge e haven’t been calculated do 

7: if ! E.contains (e ) then 

8: if The edge e is called from test to test code then 

9: w + = 0 

10: else if The edge e is called from test to source 

code then 

11: w + = 1 

12: else if The edge e is called from source to source 

code then 

13: w + = 2 

14: end if 

15: end if 

16: end while 

17: Add t and w to candidate set C = { < t 1 , w 1 >, < t 2 , w 2 > 

, . . . } 
18: Finding S which contain the largest same weight w i 

19: if w i == w i −1 then 

20: S.pop(t i ) 

21: else if w i > w i −1 then 

22: S.clear() , S.pop(t i ) 

23: end if 

24: end while 

25: if S.size ()! = 0 then 

26: Apply Lexicographical Ordering and put these test cases 

into T ′ 
27: Delete these t i from T , Put these edges in t i into E 

28: else if S.size () == 0 then 

29: Find the largest w in C, put t i into T ′ 
30: Delete t from T , Put edges in t into E 

31: end if 

32: end while 

Output: Prioritization order T ′ 

4

 

g  

a  

e  

t  

t  

t  

f  

d  

t  
find that some test cases contain a large number of loop or repet-

itiveness. Weight may not be useful in this scenario. 

4.2. Additional greedy method call sequence strategy 

We propose a prioritization strategy called Additional Greedy

method Call sequence strategy (AGC) that exploits method call se-

quences. 

It is based on the greedy coverage strategy that always selects

the test case that covers the most units that have not been covered

so far. Then, we extend the original additional greedy strategy. It is

based on the hypothesis that the more newly covered units the

better chance to reveal faults ( Rothermel et al., 1999; 2001 ). How-

ever, it is worth noting that in traditional additional greedy cov-

erage strategy, numbers of additional functions or statements or

branches are exploited to calculate the priority. In our AGC tech-

nique, we define three kinds of edges and calculate the weight

for prioritization. Another problem for traditional additional greedy

coverage strategy is that if some test cases contain the same num-

ber of coverage entities, it is hard to decide which test case should

be chosen and randomly choose one as the next, which may causes

performance reduction. We will introduce the solution called Lex-

icographical Ordering to reduce random selection in the next sub-

section. 

In general, the coverage-based criterion at the fine granularity

outperforms the criterion at coarse granularity in terms of fault de-

tection capability, but at a cost of larger overhead ( Elbaum et al.,

20 0 0 ). In our opinion, the method call sequence based criterion is

a good balance between statement coverage and function coverage.

Compared with the function coverage criterion, we consider mul-

tiple methods instead of the individual method in isolation. Our

technique is naturally superior to function-level coverage. Com-

pared with statement coverage, our unit is method thus incurs less

overhead. 

Algorithm 1 gives the pseudo-code of AGC. Figure 6 illustrates

three types of method calls (or edges in the graph) obtained from

dynamic execution traces. The top one is a method call from source

code to source code, which has the highest possibility of detecting

faults. This is because all the faults are in the source code itself,

not in the test code. We set the weight of this kind of edges to

2. The middle one is a method call from test code to source code,

which has probability to detect faults. We set the weight of such

type of edges to 1. The lowest edge is called from test code to test

code, which has no chance of detecting faults. Therefore the weight

of such type of edges is set to 0. Using Table 1 as an example, in

AGC, each value of f i can be 0 or 1 or 2. The total weight of each

test case is calculated by accumulating all of the edge weights. 

Each circulation will select one test case t that contains the

maximum number of important edges (may not the most) and put

it into the prioritization order T ′ . If there are some test cases that

contain the same number of weight, Lexicographical ordering is

exploited to prioritize them in order to reduce random selection. 
.3. Randomprocess reduction 

Random selection behaviors may affect the stability of strate-

ies in the process of prioritization. Table 2 shows an example

bout the main random process in the additional greedy strat-

gy. There are eight functions f 1 . . . f 8 and four test cases t 1 . . . t 4 ,

he same as Table 1 . If the additional greedy strategy is applied

o Table 2 , there is no doubt that t 1 will be selected as the first

est case. Then, t 2 is selected since it covers two function f 3 and

 4 which are not yet covered by t 1 . However, the traditional ad-

itional greedy strategy cannot decide whether select t 3 or t 4 as

he third test case, because both contain one function that has not
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Table 2 

Lexicographical example. 

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 

t 1 0 0 0 0 1 1 1 1 

t 2 0 0 1 1 1 0 0 0 

t 3 0 1 0 0 1 0 0 0 

t 4 1 0 0 0 0 0 0 1 
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Algorithm 2 Main process of random reduction. 

Input: Coverage matrix C = [ c(i, j)] m ×n 

Input: stack S which contains the largest same weight w i 

1: Initialize cc = [0 , ..... 0] n , cc.sort() = occ 

2: while S.size () 	 = 0 do 

3: cand id ate = null 

4: for Test cases { t 1 , ....t i } in S do 

5: tmp = occ i 

6: if cand id ate < tmp then 

7: cand id ate = tmp 

8: tbest = t i , cbest = cc i 

9: end if 

10: end for 

11: S.pop(tbest) 

12: T ′ .ad d (t best ) 

13: end while 

Output: Random process reduction order T ′ 
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een covered. A random selection may affect the fault detection

fficiency especially when there are lots of such choices. 

In order to reduce the random process, we introduce Lexico-

raphical Ordering proposed by Eghbali and Tahvildari (2016) . It

ugments additional greedy strategy by considering all the entities

method consequences, functions, statements) even if they have

een covered in the previous steps. Entities that are covered less

ill be given higher priorities. In Table 2 , f 5 is covered twice by t 1 
nd t 2 , f 8 is covered once by t 1 , so t 4 gets a higher priority and is

elected as the next test case. 

Of course, in Table 2 , if t 4 covers f 1 and f 5 , not f 8 , this algorithm

annot decide which test case to be selected. Generally speaking,

exicographical ordering can reduce but not eliminate randomness

n the additional greedy strategy. 

We choose the basic algorithm and related definition is given

s follows: 

efinition 3. When executing n test cases in n steps by any or-

er. In each step, it selects one of the test cases in the order. Let

enote s ∈ {1, 2.... n } as step s , then cc s ∈ N 

n is the total entity cov-

rage of selected test cases until step s forms a vector, called Cu-

ulative Coverage vector , N is the set of non-negative integers. We

lso denote Ordered Cumulative Coverage vector as occ s , in which

he smallest element of cc s is the leftmost element of occ s . 

For example, in Table 2 , if test cases t 1 and t 2 have been chosen,

he vector cc 2 is [0, 0, 1, 1, 2, 1, 1, 1], the vector occ 2 is [0, 0, 1, 1,

, 1, 1, 2]. Selecting t 3 as the next test case, the occ 3 is [0, 1, 1, 1, 1,

, 1, 3], while selecting t 4 results in occ 3 = [0 , 1 , 1 , 1 , 1 , 1 , 2 , 2] . Due

o the reason that the latter has a higher lexicographical rank, t 4 is

elected as the next test case. 

The random process reduction algorithm is given as follows: 

In Algorithm 2 , lines 2 to 13 are the main loop of the algorithm.

tack S storages candidate test cases that cover the same number

f covered entities. Each circulation will select one containing the

ighest lexicographical rank to the output order T ′ and pop it from

 . It is worth noting that sometimes the cc s of two or more test

ases will be completely the same. In this case, we choose the last

ne to avoid the endless loop. 

In general, our AGC technique utilizes two times of additional

reedy strategy in both the global and the partial prioritization,

hich can reduce random selection and enhance the performance.

. Empirical study & experiment 

In this section, an empirical study is conducted to answer the

ollowing four research questions. All the experiments are carried

ut on a Lenovo PC with Intel Core i7-4790 3.60 GHz processor and

6GB RAM. Firstly we propose four research questions as follows. 

1. RQ1: Comparing with other TCP strategies in different cov-

erage criteria, is AGC superior enough? 

2. RQ2: Comparing with different strategies in the same cover-

age criterion, is AGC superior enough? 

3. RQ3: How is the time cost and efficiency of AGC? 

4. RQ4: How about the performance of AGC in the real faulty
environment? i
RQ1 aims to measure the performance of relation-based tech-

ique against other TCP strategies. In order to answer RQ1, we

ompared the AGC with other 22 prioritization strategies in dif-

erent coverage criteria. We choose the APFD value to measure the

ault detection capability of each technique. It is widely utilized in

CP domain. 

RQ2 is built for verifying whether AGC strategy performs well

ompared with other strategies in the same coverage criterion. We

ompare AGC with GA, TC, GOS and ART algorithm in the same

ethod call sequence coverage criterion. We will also discuss the

PFD value of each technique and try to verify the efficiency of

GC. 

RQ3 aims to verify whether AGC achieves a good trade-off or

ven surpasses the strategies based on function or statement or

ranch criterion. We will measure the fault detection capability of

ach strategy and the execution time of each criterion in different

trategies to answer RQ3. 

RQ4 is designed to prove the availability of AGC in a real faulty

ataset, due to the reason that some researchers ( Just et al., 2014b;

ndrews et al., 2005 ) doubted if mutant test cases are effective in

imulating real-world regression testing environment. We collect

he detected fault number and the number of executed test cases

o make the curve in Fig. 8 . The lower the curve is, the higher the

ault detection capability it achieves. Experiments on a real faulty

ataset called Defects4J are convincing enough to answer RQ4. 

.1. Implementation and Subject Programs 

Kieker Van Hoorn et al. (2012) is utilized in our implementation

s the experimental framework. Kieker can dynamically instrument

he classes loaded into the JVM through a Javaagent command

ithout any modification to the source code. However, Kieker can

nly record coverage information at the method level. Then we re-

lized that Kieker does not support statement-level and branch-

evel coverage collection. In order to collect statement-level and

ranch-level information, we chose Jacoco ( Hoffmann et al., 2016 ),

t does not support function call sequence collection. In order to

e consistent with statement coverage, function coverage is also

ollected by Jacoco Both of these two instrumental tools are based

n Java bytecode instrumentation. We think they can obtain simi-

ar results. In order to measure the fault detection rate, we inject

aults into our subject programs by using Java mutation tool Mu-

ava ( Ma et al., 2005 ). As concluded in previous work ( Just et al.,

014b; Andrews et al., 2005 ), mutation faults are close to real

aults and are suitable for software testing experiment. Our exper-

ment is based on class-level test cases. 
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Table 3 

Basic information of programs (Ordered by LOC). 

Subject Programs version LOC Methods Edges TCNum Mutant num 

Commons.lang 3.5 26578 2132 4292 137 37466 

Jodatime 2.1 27213 3591 11412 154 38378 

Log4j-core 2.10.0 51769 6711 16140 362 7731 

Commons.math 2.2 56039 3984 9584 264 192791 

Jfreechart 1.0.19 98335 6897 16086 359 37271 

Ant 1.9.7 108132 8123 21756 233 70320 

Commons.math3 3.6.1 105191 7265 20251 510 339774 

Google Closure Compiler v20160713 140237 10653 49182 306 19935 

Table 4 

Method-level mutation operation. 

Operator Description 

AOR Arithmetic Operator Replacement 

AOI Arithmetic Operator Insertion 

AOD Arithmetic Operator Deletion 

ROR Relational Operator Replacement 

COR Conditional Operator Replacement 

COI Conditional Operator Insertion 

COD Conditional Operator Deletion 

SOR Shift Operator Replacement 

LOR Logical Operator Replacement 

LOI Logical Operator Insertion 

LOD Logical Operator Deletion 

ASR Assignment Operator Replacement 

SDL Statement Deletion 

ASR Variable Deletion 

CDL Constant Deletion 

ODL Operator Deletion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3 Compare TCP. 

1: Start and choose the program 

2: Filter original faults 

3: Utilize mutation tools to inject mutation faults 

4: Randomly choose five faults 

5: if Faults are repetitive then 

6: return Step 4 

7: end if 

8: Create faulty versions (10 0 0 groups) 

9: while All of the faulty versions have not been executed do 

10: Select a faulty version as the source code 

11: while Testing process hasn’t been finished do 

12: Execute test suite in particular order 

13: if i th Test case detects fault (s) then 

14: Examine the test case 

15: if Caused by inject mutations && Have not been de- 

tected then 

16: i th Test case indeed detects fault (s) 

17: end if 

18: end if 

19: end while 

20: Calculate APFD metric 

21: end while 

22: Calculate average APFD metric 

s  

m  
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T  

T
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We choose eight open source Java programs 1 2 3 4 5 6 7 that have

been broadly used in previous studies ( Luo et al., 2016; Just et al.,

2014b ) from GitHub and Apache projects as our benchmark. For

each program there are about 1% to 5% test cases that cannot be

executed due to various reasons such as version mismatching and

unsuitable environment, so we remove these test cases. It is worth

noting that version 3.0 of Commons.math conducts code refactor-

ing and we regard version 3.x of Commons.math as a new program.

Each program applies auto testing framework Junit . 

Table 3 lists the nine subject programs including their names

(Column 1), versions (Column 2), lines of code (LOC, Column 3)

and the number of methods (Column 4). The number of edges in

the aggregated graphs is given in Column 5. Columns 6 provides

the number of test cases at class level. The last column shows the

number of mutations generated by MuJava . 

5.2. Design of the empirical study 

The only information we exploit in our empirical study are the

execution results obtained by Kieker and Jacoco . That is, we do not

require extra information such as user requirements and historical

code changes. This applies to all the approaches that we imple-

ment. 

Algorithm 3 gives the pseudo-code on how to compare the ef-

fectiveness of different TCP techniques. Before starting our experi-

ments we use unit testing to eliminate buggy test cases in order to

have controlled experiments. After that we have a reasonable as-
1 http://commons.apache.org/proper/commons-lang/index.html . 
2 http://www.joda.org/joda-time/ . 
3 https://logging.apache.org/log4j/2.x/ . 
4 http://commons.apache.org/proper/commons-math/ . 
5 http://www.jfree.org/jfreechart/ . 
6 http://ant.apache.org/ . 
7 http://closure-compiler.appspot.com/home . 
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umption that the subject programs have no testing errors. Then,

utation faults which are generated by MuJava are injected into

he program in order to simulate the faulty version of the program.

he mutation operators contain in MuJava are shown in Table 4 .

hey can be classified as follows: 

1. Arithmetic Operators: (1) + , (2) −, (3) ∗, (4) /, and (5) %; 

2. Relational Operators: (1) > , (2) > = , (3) < , (4) < = , (5)

== , and (6) ! = ; 

3. Conditional Operators: (1) && , (2) ||, (3) & , (4) |, and (5) ∧ ; 

4. Shift Operators: (1) > > , (2) < < , and (3) > > > > ;

5. Logical Operators: (1) & , (2) |, (3) ∧ and (4) ~

6. Assignment Operators: (1) + = , (2) − = , (3) ∗ = , (4) / = , (5)

% = , (6) & = , (7) | = , (8) ∧ = , (9) << = , (10) >> = , and (11)

>>> = 

7. Deletion Operators: delete statements, variables, constants,

and objects. 

We randomly choose 5 different mutations into one faulty ver-

ion (e.g., a mutant group) and totally produce 10 0 0 versions for

ach subject program based on the work of Luo et al. (2016) . That

s, we generate 50 0 0 mutants in each of these programs. None

f these 50 0 0 mutants is repetitive. The real number of mutants

dopted in the experiment is 50 0 0 except for Log4j , we will en-

ure that each faulty version contains 5 mutants that can be killed

y at least one test case. As for Log4j , the total mutant number is

731 but we cannot find sufficient mutants that can be detected by

est cases. The real number of mutants adopted in Log4j is 3210. 
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Table 5 

Comparison of average APFD Values (%) for Different TCP techniques. 

Subject Programs AGC AFC ASC ABC GC FCS GA_fc GA_cs GA_st GA_br TFC TCC TSC TBC 

Commons.lang 67.55 65.32 69.22 66.74 60.10 58.29 66.56 67.02 69.73 66.67 60.47 61.29 58.11 57.99 

Jodatime 83.65 80.98 83.69 80.98 72.34 68.30 80.12 82.04 83.33 82.03 80.77 81.34 79.99 78.59 

Log4j-core 84.54 76.32 87.44 87.41 69.31 66.71 72.11 74.56 82.22 73.94 69.18 69.74 69.85 70.04 

Commons.math 74.75 66.98 66.18 63.42 73.19 56.68 64.78 72.34 66.86 63.15 60.75 62.30 54.24 53.18 

Jfreechart 82.84 78.45 78.25 81.90 77.78 78.39 80.94 82.91 78.21 81.11 77.35 79.59 77.65 79.23 

Ant 82.59 77.78 79.17 78.81 75.13 52.86 77.54 81.79 78.53 79.22 75.28 76.16 75.53 75.20 

Commons.math3 73.15 67.03 71.45 67.43 67.76 53.44 66.36 71.16 66.16 71.57 68.32 60.84 54.45 52.85 

Google Closure Compiler 91.13 84.12 89.44 85.42 88.86 65.40 85.13 88.31 87.71 86.10 75.15 76.51 75.84 74.49 

Average 80.81 74.62 79.63 77.00 73.07 62.33 74.19 77.52 76.59 75.47 70.91 70.97 68.21 68.19 

Subject Programs AGC(repeated) GOS_fc GOS_cs GOS_st GOS_br ART_fc ART_cs ART_st ART_br NO 

Commons.lang 67.55 66.17 66.90 69.65 66.21 59.26 62.54 61.42 61.33 50.04 

Jodatime 83.65 79.44 80.27 82.11 79.97 68.54 75.19 78.44 74.71 79.16 

Log4j 84.54 73.13 80.18 82.22 81.19 75.21 78.92 80.10 79.64 64.41 

Commons.math 74.75 66.33 71.53 63.38 62.18 67.09 69.47 66.54 64.17 60.81 

Jfreechart 82.84 82.31 85.11 84.63 82.85 85.33 86.98 85.42 84.35 56.52 

Ant 82.59 77.37 81.75 77.39 77.86 55.31 63.44 62.63 61.26 73.08 

Commons.math3 73.15 67.11 70.79 64.60 62.91 59.66 66.15 65.84 62.96 39.58 

Google Closure Compiler 91.13 84.36 87.03 87.19 84.59 89.17 89.67 87.16 89.05 62.64 

Average 80.81 7453 78.63 77.92 72.90 69.95 74.97 67.76 73.22 61.07 
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It is noted that we know what is the mutation operation and

here will the mutant be injected to in advance. When Junit re-

orts one fault after executing test cases, it is easy for us to locate

he mutant based on the testing log of Junit . We have filtered these

utations and tried our best to make sure that each faulty version

as 5 independent mutants. In other words, if there is a new fault

etected by the test case, it is only caused by one mutant. 

In fact, large numbers of mutants cannot be detected by execut-

ng test cases. One mutant per version is really an expensive way

o simulate the real fault version. In order to validate that whether

ur faulty version can successfully simulate the real faulty environ-

ent, we ran AGC and other TCP techniques on real faulty dataset

amed Defects4J . We will introduce it in the following. 

In order to measure the effectiveness of fault detecting capa-

ilities for each prioritization technique, we choose Average Per-

entage of Faults Detected (APFD) metric, defined by Eq. 1 . It is

idely utilized in TCP domain ( Rothermel et al., 2001; 1999; El-

aum et al., 20 0 0; 20 02; 20 03 ). 

P F D = 1 − T F 1 + T F 2 + · · · + T F m 

nm 

+ 

1 

2 n 

(1)

here TF i is the first fault detecting location that detects fault i in

his prioritization order, n is the number of test cases, and m is

he number of faults. Recall that we created 10 0 0 faulty versions

or each subject program and ran all TCP techniques over these

0 0 0 faulty version. In other words, we executed all test cases and

an each technique 10 0 0 times for each subject. In addition, Jacoco

ndeed does not support per-test coverage and only gives the to-

al coverage report. In order to solve this problem, each time we

nly run one test case and collect the execution report. If one test

ase finishes executing, the next test case starts executing. Since

e know the location of these mutations in advance, we can mea-

ure which mutation causes the fault based on the testing log of

unit . In order to precisely measure the fault, we use one single

hread to execute test cases one by one, which is time consuming.

fter running all test cases, we calculate 10 0 0 APFD values and

tilize the mean value for evaluation. 

.3. Performance 

In this subsection, we present experimental data to answer RQ1,

Q2 and justify the effectiveness of AGC in regression testing pri-

ritization. Fig. 7 shows the boxplots of the APFD values for all the
CP techniques, the x-axis represents different techniques as fol-

ows: 

• AGC: Additional Greedy Method Call Sequence Technique; 
• AFC: Additional Greedy Function-coverage Technique; 
• ASC: Additional Greedy Statement-coverage Technique; 
• ABC: Additional Greedy Branch-coverage Technique; 
• GC: Graph Similarity Clustering Technique; 
• FCS: Function Call Sequence; 
• GA_fc: Search-based Technique (Genetic-based Algorithm in 

function-level); 
• GA_cs: Search-based Technique (Genetic-based Algorithm in 

call-sequence-level); 
• GA_st: Search-based Technique (Genetic-based Algorithm in 

statement-level); 
• GA_br: Search-based Technique (Genetic-based Algorithm in 

branch-level); 
• TFC: Total Greedy Function-coverage Technique; 
• TCC: Total Greedy Method Call Sequence Technique; 
• TSC: Total Greedy Statement-coverage Technique; 
• TBC: Total Greedy Branch-coverage Technique; 
• GOS_fc: Greed-aided-clustering Ordered Sequence (Function- 

level); 
• GOS_cs: Greed-aided-clustering Ordered Sequence (Call- 

Sequence-level); 
• GOS_st: Greed-aided-clustering Ordered Sequence 

(Statement-level); 
• GOS_br: Greed-aided-clustering Ordered Sequence (Branch- 

level); 
• ART_fc: Adaptive Random Technique (Function-level); 
• ART_cs: Adaptive Random Technique (Call-Sequence-level); 
• ART_st: Adaptive Random Technique (Statement-level); 
• ART_br: Adaptive Random Technique (Branch-level); 
• NO: Natural Order (Represent the result without any priori-

tization, which is tested in alphabetical order). 

The values of APFD for all subject programs are given in

ig. 7 and Table 5 . Each sub-figure in Fig. 7 presents a subject pro-

ram. It has detailed APFD values under different TCP techniques.

n addition, each boxplot represents the APFD distribution from 5%

o 95%. In Table 5 , the TCP technique that has the best performance

s marked in red color, the next best is marked in blue color, the

hird best is marked in yellow color and the fourth best is marked

n green color. 
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Table 6 

Mann–Whitney tests between AGC and other techniques. 

AFC ASC ABC GC FCS GA_fc GA_cs GA_st GA_br TFC TCC TSC TBC 

Mann-Whitney U 43110 43180 53726 43031 36499 53087 57891 53784 51781 36417 45325 31458 38413 

Wilcoxon W 102531 102865 113411 102716 96174 113564 117894 113429 112784 92314 102482 96357 96341 

Z -6.282 -6.239 -2.210 -6.296 -8.790 -2.754 -1.944 -6.357 -3.495 -6.927 -2.887 -8.152 -7.145 

η2 0.621 0.626 0.597 0.626 0.644 0.599 0.586 0.597 0.602 0.641 0.620 0.658 0.639 

p .000 .000 .027 .000 .000 .000 .039 .011 .016 .007 .010 .000 .004 

GOS_fc GOS_cs GOS_st GOS_br ART_fc ART_cs ART_st ART_br 

Mann-Whitney U 51157 58904 57372 53268 49361 54293 53449 57181 

Wilcoxon W 111246 118589 117057 112953 109433 113978 113134 116866 

Z -3.111 -0.232 -6.312 -2.385 -3.831 -1.994 -2.316 -2.119 

η2 0.601 0.583 0.587 0.598 0.609 0.596 0.598 0.588 

p .002 .816 .000 .017 .000 .046 .021 .037 
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Based on these boxplots, we can make the following observa-

tions: 

Finding 1: An interesting phenomenon is found as that with

the size of programs growing, the performance of AGC also ex-

hibits a continuous growth trend compared with traditional TCP

techniques. In the small subject programs commons.lang, jodatime

and log4j-core with LOC ranging from 26578 to 51769, the per-

formance of AGC is worse than that of ASC. For example, in the

program Jodatime , the median APFD value of the ASC technique is

0.8365 followed by AGC, GA_st, GOS_st, GA_cs, GA_br, AFC, TCC,

TFC, ABC, GA_fc, GOS_cs, TSC, GOS_br, GOS_fc, NO, TBC, ART_st,

ART_cs, ART_br, GC, ART_fc and FCS. A half number of TCP strate-

gies are even worse than NO ( Table 5 ). 

However, in large subject programs such as Math, Jfreechart, Ant,

Math3, Google Closure Compiler with LOC ranging from 56039 to

140237, the performance of AGC is superior and even better than

ASC. For example, in the program Google Closure Compiler , the me-

dian APFD value of AGC achieves the best performance 0.9113, fol-

lowed by ART_cs, ART_fc, ASC, ART_br, GC, GA_cs, GA_st, GOS_st,

ART_st, GA_br, GOS_cs, GA_fc, ABC, AFC, GOS_fc, TCC, TSC. TFC, TBC,

FCS and NO. In the program Jfreechart , the median APFD value of

AGC is 0.8284, better than 0.7845 of AFC and 0.7825 of ASC, but a

little worse than GA, ART and GOS algorithm. However, our exper-

iments show that ART are not stable enough. In the program Ant ,

performances of all the ART strategies are even worse the alpha-

betical order NO. GA is a competitive strategy bu we also achieve

a better performance in the average fault detection rate. GOS will

be discussed in Finding 2. 

As a conclusion, no matter comparing with different granularity

techniques ASC and AFC or comparing with GA, TFC, GOS and ART

based on the same coverage criterion, our AGC technique achieves

the best average fault detection capability. It shows a clear growth

trend when the size of the program becomes larger and larger. Per-

formance results can answer RQ1 and RQ2 that AGC is superior

to improve the performance of test case prioritization in regres-

sion testing. 

5.4. Significance analysis 

In order to investigate whether there are significant differences

among the 22 test case prioritization techniques, we performed

a one-way ANOVA 

8 on the APFD values gathered from each pro-

gram with mutation faults. The ANOVA test reveals whether there

is a significant difference between all studied techniques based on

the APFD value. Statistical analysis results for the eight object pro-

grams are shown in Table 7 , where SS denotes Sum of Squares, DF
8 The statistical analyses described in this paper are performed using SPSS 19.0, 

analytical software accessible at http://www.spss.com . 

t  

r  

r  

h  
enotes Degrees of Freedom, MS denotes Mean Square, F denotes

he statistical F-value, p denotes the calculated p-value, and η2 de-

otes the Partial Eta Squared. η2 will help us quantify how strong

ffects are and tell us the correlation between two variables. When

he p-value is less than 0.001, it will be represented by 0.0 0 0. 

As the result shows in 7 , the p-value in all programs are 0.0 0 0,

maller than the significance level of 0.05. It is clear that there are

ignificant differences among the 22 test case prioritization tech-

iques at different granularities on each program. η2 in one-way

NOVA test ranges from 0.14 in Jodatime to 0.511 in Google Clo-

ure Compiler . It means that different methods are strongly related

o results in our experimental project. There are significant differ-

nces between different methods. 

Moreover, in order to illustrate the relationship between in-

ividual subject programs, we performed the Wilcoxon-Mann-

hitney test between AGC and other techniques in Table 6 . It

an be used to determine whether two independent samples were

elected from populations having the same distribution. Mann −
 hitney U and Wilcoxon W are our test statistics. They summarize

he difference in mean rank numbers in a single number. Z denotes

-score, p denotes p-value, and η2 denotes the Partial Eta Squared.

Finding 2: There is a statistically significant difference between

echniques across subjects (e.g., p < 0.05, η2 > 0.5), only GOS_cs

as a relationship with our method. We have checked the reason

nd found that in some cases the cluster process of GOS algorithm

oes not work, even reduce the fault detection capability. We have

arefully read the paper and find that in the clustering process,

OS algorithm merge the two clusters with minimum distance in

ach loop. However, there is a risk that if we always merge two

lusters with minimum distance, it will gather the most of entities

nto one large cluster so that the clustering process is meaningless.

ven it will decrease the fault detection capability. We have found

his case in nearly half of our subject programs. Therefore, in most

ases GOS_cs is an inferior AGC algorithm, that is the reason why

t is significantly related to AGC. 

.5. Time usage 

Table 8 shows the prioritization cost of each TCP technique. The

rioritization cost increases significantly when choosing finer gran-

larity. However, there is no big gap between TCP techniques in

he same granularity. We have tried our best to use the similar

ata structure in order to avoid the noise and the interrupt of the

aw data. It is valuable to mention that there are two parts of GOS

lgorithm. The first part is merge clusters based on edit distance

o k clusters and the second part is apply additional greedy algo-

ithm in each cluster. In the first part, we utilize the edit distance

esults of FCS. Therefore, the actual time costs of GOS algorithm is

igher than that are listed in the Table. The prioritization cost of
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Fig. 7. Result for our techniques and traditional TCP techniques on 8 open source programs. The box and whisker plots represent the values of APFD metric for different 

TCP techniques. The x-axis represents the different techniques and the y-axis represents the APFD values. The central box of each plot represents the values from 25 to 75 

percentage. 

A  

fi  

e  

p  

t  

g

 

d  
GC is between AFC and ASC, nearly the same as ABC and more ef-

cient than other similarity-based techniques except for ART. How-

ver, we achieve better fault detection performance than it. Com-

aring with other techniques, total greedy strategy takes the least
b  
ime, ART takes the most time. The time cost of GA and additional

reedy is in the same level. 

Additional greedy algorithm needs to repetitively search all can-

idates to find the next test case which contains the highest num-

er of unique entities. In other words, it always searches for the
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Fig. 7. Continued 
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test case that covers the most units that have not been covered.

That is the main prioritization cost. Lexicographical ordering will

increase 10%-20% time cost. However, it indeed will improve the

performance. The implementation of the additional greedy algo-

rithm still has space to be optimized. 

As a conclusion, the cost of AGC is one-third to one-

eighth as long as ASC but achieves a better mean APFD
alue. Both the performance and the cost of AFC is less than

GC. We can answer RQ3 that it is a good trade-off be-

ween time cost and fault detection capability. If developers

ant to obtain a sweet spot between fault detection capa-

ility and prioritization cost, we believe our AGC technique

s competitive with other TCP techniques, especially in large

rograms. 
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Fig. 8. Different performances on Defect4J. 
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.6. Real world experiment 

Experiments in the previous subsection utilize mutant test

ases that contain faults to simulate faulty versions of programs

n the real world. In order to answer RQ2, this subsection we

ill implement our approach and other comparative prioritization
trategies on real faulty versions which are collected by the dataset

amed Defects4J ( Just et al., 2014a ). 

Defects4J is a collection of reproducible bugs and a support-

ng infrastructure with the goal of advancing software engineer-

ng research. Defects4J contains 395 bugs from the following open-

ource projects in Table 9 : 
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Table 7 

One-way ANOVA results. 

Commons.lang SS DF MS F p η2 

Between Groups 6.348 5 .058 71.372 0.000 0.183 

Within Groups 28.430 1918 0.015 

Total 34.777 1924 

Jodatime SS DF MS F p η2 

Between Groups 2.362 5 0.186 11.643 0.000 0.141 

Within Groups 15.677 980 0.016 

Total 16.795 986 

Log4j SS DF MS F p η2 

Between Groups 15.496 5 3.099 368.408 0.000 0.434 

Within Groups 20.190 2400 0.008 

Total 35.686 2405 

Commons.math SS DF MS F p η2 

Between Groups 10.435 5 1.191 135.606 0.000 0.401 

Within Groups 26.003 2961 0.009 

Total 33.149 2967 

Jfreechart SS DF MS F p η2 

Between Groups 19.352 5 3.225 298.732 0.000 0.427 

Within Groups 25.998 2408 0.011 

Total 45.350 2414 

Ant SS DF MS F p η2 

Between Groups 5.196 5 0.866 86.490 0.000 0.400 

Within Groups 7.780 777 0.010 

Total 12.976 783 

Commons.math3 SS DF MS F p η2 

Between Groups 32.318 5 5.386 541.940 0.000 0.509 

Within Groups 31.168 3136 0.010 

Total 63.486 3142 

Google Closure Compiler SS DF MS F p η2 

Between Groups 28.208 5 4.701 533.007 0.000 0.511 

Within Groups 27.043 3066 0.009 

Total 55.251 3072 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

F

 

g  

f  

C  

p

 

l  

t  

g  

t  

s  

t  

c  

f

 

o

5

 

t  

i  

o

 

r  

y  
Each bug in Table 9 has the following properties: 

• Issue filed in the corresponding issue tracker, and issue

tracker identifier mentioned in the fixing commit message; 
• The Defects4J maintainers manually pruned out irrelevant

changes and the bug is fixed in a single commit (e.g., refac-

torings or feature additions); 
• The test failure is not random or dependent on test execu-

tion order, a triggering test that failed before the fix and

passes after the fix exists. 

Some bugs can be triggered by the same test case in the dif-

ferent commit versions and others can be triggered by more than

one test cases. Therefore, we collect and count test cases trig-

gered by all the bugs in the last row of Table 9 . It is necessary

to explain Lang and Math . The version 3.0 of Commons.lang and

Commons.math are refactoring versions, we singly collect referred

test cases of Commons.lang higher than version 3.0 and divide the

program of Commons.math into two programs Commons.math and

Commons.math3 . 

Fig. 8 shows the result of different prioritization strategies on

Defect4J. The x-axis represents the fault number that detected by

executed test cases. The y-axis shows the number of executed test

cases. We use different sighs to represent the AGC, AFC, ASC, ABC,

GC, FCS, GA_fc, GA_cs, GA_st, GA_br, TFC, TCC, TSC, TBC, GOS_fc,

GOS_cs, GOS_st. GOS_br, ART_fc, ART_cs, ART_st, ART_br and natu-

ral alphabetic order respectively, the blue curve with circular mark

represents the AGC strategy. Generally speaking, the closer the
urve is to the x-axis, the better performance the technique gets.

rom the figure, we have the following observations: 

First, our technique AGC (blue curve with circular mark) gets a

ood performance in real world programs. For example, AGC per-

orms very well in Commons.math3, Jfreechart and Google Closure

ompiler , always the best in the overall test process and sometimes

erforms the best in Jodatime, Commons.lang and Commons.math . 

Second, results on real faulty versions of Defects4J is simi-

ar with the results on mutant faulty versions in Figure 5.3. Our

echnique AGC have a clear growth trend when the size of pro-

rams becomes bigger and bigger. For example, performances in

hree bigger programs Commons.math3, Jfreechart and Google Clo-

ure Compiler are obviously better than three smaller programs. We

hink the reason to be that larger lines of code may bring more

omplex structure and rapidly method call sequence increase than

unction increase. This is beneficial for our AGC strategy. 

In conclusion, just like what RQ4 said, AGC is effective not

nly in the mutant environment but also in real faulty cases. 

.7. Evaluation 

Experiments above show that our AGC technique performs bet-

er in programs of big size, even better than statement-granularity

n some programs. The reason that we think is the discrimination

f test cases in different granularities. 

Fig. 9 shows the entity growth in nine programs. The x-axis

epresents the number of test cases that have been executed. The

-axis represents the percentage of entity coverage (Function, Call
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Table 9 

Bugs contained in Defect4J. 

Identifier Project name Number of bugs 

Time Jodatime 22 

Lang Apache.commons.lang 45 

Math Apache.commons.math 60 

Math3 Apache.commons.math3 62 

Chart Jfreechart 61 

Closure Google Closure compiler 72 
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equence, Statement, Branch) by executed test cases. We utilize

hree prioritization techniques in different granularities. The dot-

ed line represents the execution result of Statement in ASC strat-

gy. The full line represents the execution result of Call Sequence

n AGC strategy. The imaginary line denotes the execution result of

unction in AFC strategy. The dash-dot line denotes the execution

esult of Branch in ABC strategy. Other techniques are not consid-

red in order to control variables. 

We can find that in big size programs, the curve of the call

equence is detached obviously with the curve of the function.

n other words, test cases in call sequence granularity are more

iscriminable than those in function-granularity. Those test cases

ith more unique call sequences will be labeled as fault-prone

andidates and put into the front of the test order. Big-sized pro-

rams contain the complex structure and more call sequences, but

ot the same growth rate of functions, statements and branches.

hat is the reason we think our technique shows up a growth

rend of performance with the size of the program increases. 

. Threats to validity 

To justify the effectiveness of our relation-based TCP techniques

e implemented some TCP techniques presented in prior works for

omparison. However, traditional TCP techniques we implemented

re based on the guidelines in original works. We are afraid of mis-

nderstanding the authors’ original intention. For example, when

e tried to implement the ART technique, we found that the first

est case that selected from the candidate set has a great influence

n the APFD metric. In the original work, the author randomly

hose a test case as the first but in this case, the APFD value was

nstable and not matching our requirement. Thus, in this study, we

ocked the first candidate test case and chose the one that covers

he biggest number of functions as the first test case. 

In order to collect the raw data at function-level and statement-

evel, we use different monitoring and testing tools Kieker and Ja-

oco . It is not guaranteed that these two tools’ data obtainment is

omplete and credible. Thus, the missing data may impact the ef-

ective comparison between different granularities. 

Another issue is that JaCoCo reports branch coverage in line

evel granularity, i.e. for every line the number of covered branches

s. the number of missed branches is reported. Due to the limita-

ion of JaCoCo , we only know how many branches are executed or

issed, but it doesn’t tell us which branch is missed. In this case,

f two test cases execute a if/switch block and both of them miss 1

f 4 branches. We can judge if these two test cases attain the same

xecution status. If not, they will be labeled as covering different

ranch elements. Another scenario is that, if one test case misses 1

f 4 branches and the other test case miss 3 of 4 branches, we are

ot sure if the second test case executes the missing branch of the

rst test case. However, we will choose the first test case because

t covers more branch elements. 

In fact, the only correlation we know is whether these two test

ases cover the same branches. We cannot verify the inclusion re-

ation between the two. This function is not as accurate as exactly

nows each branch information. However, we have manually ana-
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Fig. 9. Entity growth in different granularities. 
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lyzed some branches and prioritized them based on the concrete

branch coverage information, results are nearly the same. It may

depend on the quality of test cases. 

In this research, we try our best to ensure the equity for each

TCP technique, such as filter the raw data, using the same data

structure and repeating more than once to calculate the mean

value, which may reduce the risk of using different testing and

monitoring tools. 

The main external threat to our study is that the experiment is

conducted on 8 Java software systems, which may impact the uni-

versality of results. However, the size of programs that we chose

varies from 26K to 140K, most of these programs were used as

benchmarks in previous papers ( Luo et al., 2016; Just et al., 2014b ).

Thus, we believe our study has sufficiently mitigated this threat to
 point that the conclusion can be drawn in the context of our re-

earch questions. 

. Future work 

GOS technique inspires us that some heuristic cluster technique

ay be helpful to improve the performance and time cost of AGC.

f we can introduce more efficient cluster algorithm to reduce the

lobal addition greedy search cost. However, there are numbers of

arameters that cluster-based techniques need to choose. Such as

he k value of cluster number, which sample strategy should these

lusters choose. These parameters will significantly affect the per-

ormance of cluster-based techniques. We have tried some tech-

ique such as k-means and k-medoids. The performance is not

ood and it is really hard to decide which number of clusters

hould we choose. Hierarchical clustering or even machine learn-

ng technique are good choices but it is the future work. 

. Conclusion 

In this paper, a relation-based TCP technique AGC based on

ethod call sequences is presented. Balance the prioritization effi-

iency and effectiveness is a big problem that traditional coverage-

ased TCP techniques need to be faced. The relation information

hat corresponds to method call sequences in our graph model per-

orms well in TCP process. It gives us the confidence that it can

ffer a good trade-off between the two factors Based on the new

riterion we have implemented the prioritization algorithm AGC. 

Experiments are conducted between our AGC techniques and

ther traditional TCP techniques on eight open source programs

nd a real faulty dataset. AGC is particularly effective on large pro-

rams in our experimental results. As for the reason, these pro-

rams have complex structural information, bugs are hard to be

etected by the traditional unit-based coverage criterion. Our AGC

pproach achieves a better average fault detection capability index

han finer granularity statement-coverage techniques with one-

hird to one-eighth cost. It is proved both outstanding in the mu-

ant and real faulty environment. Therefore, we believe relation-

ased technique AGC performs well as a trade-off between fault

etection capability and prioritization cost. 
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